Tuesday, February 17, 2009

Why Are Plants Green? or Why Aren't Plant Black?


If I was hired as an engineer to design a machine whose job was to convert light energy into chemical energy I probably would not choose to use a green pigment. Instead, I would choose to use a black pigment because black pigments would absorb more energy because they would absorb all wavelengths of light. If you look at a field of plants you will notice that they are green (OK this doesn't work too well around Lubbock in the winter)and we have learned that chlorophyll, a green pigment, is the dominant photosynthetic pigment. What is going on?

Here is one theory about why chlorophyll is the dominant photosynthetic pigment in plants today. Early on there were photosynthetic bacteria with purple pigments (purple is a combination of red and violet). These aquatic bacteria had a very simple sort of cyclic electron flow that was able to convert light energy into energy in ATP (they didn't have non-cyclic flow or the Calvin Cycle).

Origin of chlorophyll- The purple pigment absorbed all wavelengths of light except for the reds and violets. Thus, any bacteria using purple pigments that lived deeper in the water than the purple bacteria on the surface would have no light to use because it had all been absorbed by the surface bacteris (exploitative competition). Because red and violet wavelengths pass through to deeper water, bacteria that contained a pigment that was able to absorb these wavelengths would be able to coexist with the purple bacteria. This was the origin of chlorophyll.

Competition purple and green photosynthetic pigments. Over time there was competition between organisms with purple photosynthetic pigments and green photosynthetic pigments. Obviously, the green photosynthetic pigments won this competition because chlorophyll is the dominant photosynthetic pigment today (there are still examples of photosynthetic bacteria with purple pigments, but they are limited to very harsh environments). Interestingly, chlorophyll came to dominate, not because it was a better at absorbing light energy, but rather because the cyclic flow machinery associated with chlorophyll was more efficient at producing ATP than the machinery associated with the purple pigment was. Thus, it is an evolutionary accident that modern plants are green.

Black Plants

It would be possible for modern plants to be black if they had enough accessory pigments to allow them to absorb all wavelengths of light. In fact, some red algae that live deep below the surface where light levels are low are basically black. Because the amount of light is not the factor that limits the rate of photosynthesis in most terrestrial plants, it is not worth the cost of producing extra accessory pigments. However, deep in the ocean where light levels are low, plants benefit from being able to absorb all wavelengths of light so deep marine algae have invested in extra accessory pigments.

Expected Learning Outcomes

By the end of this course a fully engaged student should be able to

- discuss why terrestrial plants to not invest in the accessory pigments required to make them black

No comments:

Post a Comment